What is gas chromatography (GC)?




Gas Chromatography

Gas chromatography (GC) is based on the repeated partition or adsorption, between a mobile phase and a stationary phase, of components to be separated. The mobile phase is always a gas known as the carrier gas. The stationary phase can be either a solid or a liquid.

When the stationary phase is a solid then it is called gas-solid chromatography (GSC) or adsorption chromatography. The components of the injected sample are adsorbed on the solid and the principle of separation is based on the fact that the various components can be more or less strongly adsorbed by the adsorbent.
The solid stationary phases used in gas chromatography are materials such as silica gel, active carbon, aluminum oxide, molecular sieves.

When the stationary phase is a liquid then it is called gas-liquid chromatography (GLC) or partition chromatography. The components of the injected sample form different concentrations in the liquid stationary phase and in the gaseous mobile phase.

Like all chromatographic techniques, gas chromatography separates mixtures by taking advantage of their components differential distribution between two phases – one stationary and the other moving. The distinctive feature of gas chromatography is the use of a gas as the moving, or mobile, phase. It is usually called carrier gas. A sample of the mixture to be separated is introduced into this gas stream just before it encounters the stationary phase. The components of the injected sample – the sample may be a liquid or a gas-  are separated by elution and detected as they emerge in the gas at the other end of the column (Fig. 1). They are distinguished by the different times which they take to pass through the colum – the retention times.


Fig. 1: Block diagram of a gas chromatography system 


The hardware components used in typical GC systems include an injector, a carrier gas, a column (stationary phase), an oven, a detector and a recorder or information processor (Figure 1). Several components have variable settings that can be used to optimize the analysis of different sample types.

A GC-MS analytical instrument is shown in the following video. A mass spectrometer is the detector in this case: